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Zero–One Laws for Connectivity
in Random Key Graphs
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Abstract—The random key graph is a random graph naturally
associated with the random key predistribution scheme introduced
by Eschenauer and Gligor in the context of wireless sensor net-
works (WSNs). For this class of random graphs, we establish a new
version of a conjectured zero–one law for graph connectivity as the
number of nodes becomes unboundedly large. The results reported
here complement and strengthen recent work on this conjecture by
Blackburn and Gerke. In particular, the results are given under
conditions which are more realistic for applications to WSNs.

Index Terms—Graph connectivity, key predistribution, random
key graphs, wireless sensor networks (WSNs), zero–one laws.

I. INTRODUCTION

A. Background

R ANDOM key graphs, also known as uniform random in-
tersection graphs, are random graphs that belong to the

class of random intersection graphs [17]. They have appeared
recently in application areas as diverse as clustering analysis
[9], [10], collaborative filtering in recommender systems [13],
and random key predistribution for wireless sensor networks
(WSNs) [5], [6], [8].
For the sake of concreteness, we introduce this class of

random graphs in this last context (hence, the terminology). A
WSN is a collection of spatially distributed sensors with limited
capabilities for computations and wireless communications. It
is envisioned that such networks will be used in applications
such as battlefield surveillance, environment monitoring, and
traffic control, to name a few. In many settings, both military
and civilian, network security will be a basic requirement for
successful operations. However, traditional key exchange and
distribution protocols are based on trusting third parties, and
turn out to be inadequate for large-scale WSNs; for example,
see [8], [15], [19], and [20] for discussions of some of the
challenges. To address some of the difficulties, Eschenauer and
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Gligor [8] have recently proposed the following random key
predistribution scheme.
Before deployment, each sensor in a WSN is independently

assigned distinct cryptographic keys which are selected at
random from a pool of keys (with ). These keys
constitute the key ring of the node and are inserted into its
memory. Two sensor nodes can then establish a secure link be-
tween them if they are within transmission range of each other
and if their key rings have at least one key in common; see [8]
for implementation details. A situation of particular interest is
that of full visibility whereby nodes are all within communica-
tion range of each other. In that case, a secure link can be es-
tablished between two nodes if their key rings have at least one
key in common. The resulting notion of adjacency defines the
random key graph on the vertex set
where is the number of sensor nodes; see Section II for pre-
cise definitions.
A basic question concerning the scheme of Eschenauer and

Gligor is its ability to achieve secure connectivity among par-
ticipating nodes in the sense that a secure path exists between
any pair of nodes. Therefore, under full visibility it is natural to
seek conditions on , , and under which the random key
graph constitutes a connected graph with high
probability—the availability of such conditions would provide
an encouraging indication of the feasibility of using this pre-
distribution scheme for WSNs. As discussed in Section III, this
search has lead to conjecturing the following zero–one law for
graph connectivity in random key graphs: if the parameters
and are scaled with according to

(1)

for some sequence , then it has been conjectured
that

if
if

(2)

This conjecture appeared independently in [1] and [21]. The
zero–one law (1)–(2) mimics a similar one for Erdös–Rényi
graphs [2], and can be motivated from it by asymptotically
matching the link assignment probabilities in these two classes
of random graphs.

B. Related Work

Recent results concerning the conjectured zero–one law
(1)–(2) are now surveyed: Di Pietro et al. have shown [6, Th.
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4.6] that for large , the random key graph will be connected
with very high probability if and are selected such that

as soon as .1 They also observe that for large , the
random key graph will be disconnected with very high prob-
ability if the scaling satisfies

The zero law in (2) has recently been established indepen-
dently by Godehardt and Jaworski [9], Blackburn andGerke [1],
and Yağan and Makowski [21]. In all these papers, it was shown
that

whenever in (1), a result which clearly
implies the conjectured zero law.
Blackburn and Gerke [1] also succeeded in generalizing the

one-law result by Di Pietro et al. in a number of directions: under
the additional conditions

(3)

they showed [1, Th. 5] that

(4)

if

(5)

This result is weaker than the one law in the conjecture (1)–(2).
However, in the process of establishing (4)–(5), they also show
[1, Th. 3] that the conjecture does hold in the special case
for all without any constraint on the size of the

key pools, say or . Specifically, the one law in
(2) is shown to hold whenever the scaling is done according to

as soon as . As pointed out by these authors, it
is now easy to conclude that the one law in (2) holds whenever

and ; this corresponds to a
constraint .

C. Contributions

In this paper, we complement existing results concerning the
conjecture (1)–(2) in several ways: we establish (Theorem 4.1)
the one law in (2) under the conditions and ,
i.e., for some . Since the zero law in (2) has
already been established [1], [9], [21], the validity of (1)–(2)
thus follows whenever and .
This result already improveson theone law(4)–(5)obtainedby

Blackburn and Gerke [1] under condition (3). Moreover, as dis-
cussed earlier, these authors have established the conjecturedone
law in (2)under conditionsverydifferent fromtheonesusedhere,

1In the conference version of this work [5, Th. 4.6], the result is claimed to
hold for .

i.e., either or with . In practical
WSN scenarios, it is expected that the size of the key pool will be
much larger than the number of participating nodes [6], [8] and
that key rings will contain more than two keys. In this context,
our results concerning the full conjecture (1)–(2) are therefore
given under more realistic conditions than earlier work.
The proof of the main result is lengthy and technically

involved. However, in a parallel development, we have also
shown in [25] that when with , the
so-called small key pool case, elementary arguments can be
used to establish a one law for connectivity. This is an easy
byproduct of the observation that connectivity is achieved in
the random key graph whenever all possible key rings have
been distributed to the participating nodes.
The results established in this paper were first announced in

the conference paper [23] with an outline of the proofs; the full
details were provided in an early draft [22] posted in January
2009. However, after completing this work, we learned of the
independent work of Rybarczyk [16] concerning the conjecture
(1)–(2) without any condition on the size of the key pool. Ref-
erence [16] deals mainly with the diameter and phase transition
threshold of random key graphs, and uses branching process ar-
guments similar to the ones given in [4]. The intermediary re-
sults, the so-called branching process lemmas, pave the way to
a proof of the conjecture (1)–(2) by an approach very different
from the one used here.

D. Structure of This Paper

This paper is organized as follows: the class of random key
graphs is formally introduced in Section II. A basis for the con-
jectured zero–one law is discussed in Section III, and the main
result of the paper, summarized as Theorem 4.1, is presented in
Section IV. A roadmap to the proof of Theorem 4.1 is given in
Section V. The approach is similar to the one used for proving
the one law for graph connectivity in Erdös–Rényi graphs [2,
p. 164], [7, Section 3.4, p. 40], [18, p. 304]; see (9)–(10). Here
as well, we focus on the probability that the random key graph
is not connected and yet has no isolated nodes. We then seek to
show that this probability becomes vanishingly small as grows
large under the appropriate scaling. As in the classical case, this
is achieved through a combination of judicious bounding argu-
ments, the starting point being the well-known bound (43) on the
probability of interest. However, in order for these arguments
to successfully go through, we found it necessary to restrict at-
tention to a subclass of structured scalings (referred throughout
as strongly admissible scalings). In Section VI, a reduction ar-
gument shows that we need only establish the desired one law
for such strongly admissible scalings. The explanation of the
left-hand side of (1) as a proxy for link assignment in the lim-
iting regime is revealed through a useful equivalence developed
in Section VII.
With these technical prerequisites in place, the needed

bounding arguments are then developed in Sections VIII–X,
and the final steps of the proof of Theorem 4.1 are outlined in
Section XI. The final sections of this paper, namely Section XII
through Section XVII, are devoted to the various technical
steps needed to complete the arguments outlined in Section XI.
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E. Notation and Conventions

A word on the notation and conventions in use: all limiting
statements, including asymptotic equivalences, are understood
with going to infinity. The random variables (rvs) under
consideration are all defined on the same probability triple

. Probabilistic statements are made with respect to
this probability measure , and we denote the corresponding
expectation operator by . The indicator function of an event
is denoted by . For any discrete set , we write for

its cardinality.

II. RANDOM KEY GRAPHS

Random key graphs are parametrized by the number of
nodes, the size of the key pool, and the size of each key
ring with . To lighten the notation, we often group the
integers and into the ordered pair .
Nodes are labeled while keys are labeled .

For each node , let denote the random set of
distinct keys assigned to node . We can think of as

a -valued rv where denotes the collection of all subsets
of which contain exactly elements—obviously,
we have . The rvs are assumed
to be i.i.d. rvs, each of which is uniformly distributed over
with

for all . This corresponds to selecting keys ran-
domly and without replacement from the key pool.
Distinct nodes are said to be adjacent if they

share at least one key in their key rings, namely

in which case an undirected link is assigned between nodes and
. The resulting random graph defines the random key graph on
the vertex set , hereafter denoted by . It is a
simple matter to check that

with

if

if (6)

whence the probability of edge occurrence between any two
nodes is equal to . Expression (6) and others given later
are simple consequences of the often used fact that

if

if
(7)

with a subset of . The case corresponds
to an edge existing between every pair of nodes, so that
coincides with the complete graph on the vertex set .
Also, we always have with if and only
if .

Random key graphs form a subclass in the family of random
intersection graphs. However, the model adopted here differs
from the random intersection graphs discussed by Singer-Cohen
et al. in [12], [17] where each node is assigned a key ring, one
key at a time according to a Bernoulli-like mechanism (so that
each key ring has a random size and has a positive probability of
being empty). Both subclasses are subsumed by the more gen-
eral random intersection graph model discussed by Godehardt
et al. [9], [10].
Throughout, with , and positive integers and
such that , let denote the probability that the

random key graph is connected, namely

III. BASIS FOR THE CONJECTURE

As indicated earlier, we wish to select and so that
is as large (i.e., as close to 1) as possible. We outline

below a possible approach which is inspired by the discussion
on this issue given by Eschenauer and Gligor in their original
work [8]; see also the discussion in [5] and [6].
1) Let denote the Erdös–Rényi graph on vertices
with edge probability [2], [7], [11]. De-
spite strong similarities, the random graph is not
an Erdös–Rényi graph . This is so because edge
assignments are independent in but can be cor-
related in . Yet, setting aside this (inconvenient)
fact, we note that can be matched naturally to an
Erdös–Rényi graph with and related through

(8)

This constraint ensures that link assignment probabili-
ties in and coincide. Moreover, under
(8) it is easy to check that the degree of a node in either
random graph is a Binomial rv with the same parame-
ters, namely and 2 Given that the de-
gree distributions in a random graph are often taken (per-
haps mistakenly) as a good indicator of its connectivity
properties, it is tempting to conclude that the zero–one
law for graph connectivity in random key graphs can be
inferred from the analog result for Erdös–Rényi graphs
when matched through condition (8).

2) To perform such a “transfer,” we first recall that in
Erdös–Rényi graphs the property of graph connectivity
is known to exhibit the following zero–one law [2]: If
we scale the edge assignment probability according to

(9)

for some sequence , then

if
if

(10)

2For Erdös–Rényi graphs, this result is well known, while for random key
graphs this characterization is a straightforward consequence of (7).
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3) Under the matching condition (8), these classical re-
sults suggest scaling the parameters and with ac-
cording to

(11)

for some sequence . In view of (10), it is
then not too unreasonable to expect that the zero–one
law

if
if

(12)

should hold (possibly under some additional assump-
tions).

Of course, for this approach to be operationally useful, a
good approximation to the right-hand side of (8) is needed.
Eschenauer and Gligor provided such an approximation with
the help of Stirling’s formula. However, as already indicated
by Di Pietro et al. [5], [6], it is easy to check that

(13)

under natural assumptions; see Lemma 7.3. Thus, if instead of
scaling the parameters according to (11), we scale them ac-
cording to

then it is natural to conjecture that the zero–one law (12) should
still hold.
While this transfer technique could in principle be applied

to other graph properties, it may not always yield the correct
form for the zero–one law; see papers [24] and [26] for results
concerning the existence of triangles in random key graphs.

IV. MAIN RESULT

Any pair of functions defines a scaling
provided the natural conditions

are satisfied. We can always associate with it a sequence
through the relation

(14)

Just set

We refer to this sequence as the deviation function
associated with the scaling . As the termi-
nology suggests, the deviation function measures by how much
the scaling deviates from the critical scaling .

A scaling is said to be admissible if

(15)

for all sufficiently large. The main result of this
paper can now be stated as follows.

Theorem 4.1: Consider an admissible scaling
with deviation function determined through

(14). We have

On the other hand, if there exists some such that

(16)

for all sufficiently large, then we have

(17)

Condition (16) is sometimes expressed as and is
slightly weaker than the growth condition at (3) used by Black-
burn andGerke [1]. Furthermore, Theorem 4.1 implies themuch
weaker one law (4)–(5). We also note that the one law in The-
orem 4.1 cannot hold if condition (15) fails. This is a simple
consequence of the following observation; see [27] for details.

Lemma 4.2: For any mapping for which the
limit exists (possibly infinite), we have

if
if

V. ROADMAP FOR THE PROOF OF THEOREM 4.1

Fix and consider positive integers and such
that . We define the events

and

If the random key graph is connected, then it does not
contain isolated nodes, whence is a subset of , and
the conclusions

(18)

and

(19)

obtain.
In [21], we established the following zero–one law for the

absence of isolated nodes by the method of first and second
moments applied to the number of isolated nodes.
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Theorem 5.1: For any admissible scaling ,
it holds that

if
if

where the deviation function is determined through
(14).
This result was also obtained independently by Blackburn

and Gerke [1], and Godehardt and Jaworski [9]. In this last
paper, the authors show the stronger result that the number of
isolated nodes is asymptotically Poisson distributed with param-
eter under scalings of the form (14) with deviation function
satisfying for some finite scalar .
Taken together with Theorem 4.1, relations (18) and

(19) pave the way to proving Theorem 4.1. Indeed, pick
an admissible scaling with devia-
tion function . If , then

by the zero law for the absence of
isolated nodes, whence with the help
of (18). If , then
by the one law for the absence of isolated nodes, and the
desired conclusion (or equivalently,

) will follow via (19) if we show that

(20)

We shall do this by finding a sufficiently tight upper bound on
the probability in (20) and then showing that it goes to zero as
well. While the additional condition (16) plays a crucial role in
carrying out this argument, a number of additional assumptions
will be imposed on the admissible scaling under consideration.
This is done mostly for technical reasons in that it leads to sim-
pler proofs. Eventually, these additional conditions will be re-
moved to ensure the desired final result, namely (17) under (16);
for example, see Section VI for details.
With this in mind, the admissible scaling is

said to be strongly admissible if its deviation function
satisfies the additional growth condition

(21)

Strong admissibility has the following useful implications:
Under (21) it is always the case from (14) that

(22)

Since for all , this last convergence
implies

(23)

As a result, we have

(24)

for all sufficiently large, and the random key graph
does not degenerate into a complete graph under a strongly ad-
missible scaling. Finally, in Lemma 7.3 we show that (22) suf-
fices to imply

(25)

This is discussed in Section VII, and provides the appropriate
version of (13).

VI. REDUCTION STEP

The relevance of the notion of strong admissibility flows from
the following fact.

Lemma 6.1: Consider an admissible scaling
whose deviation sequence satisfies

Assume there exists some such that (16) holds for
all sufficiently large. Then, there always exists an
admissible scaling with

(26)

whose deviation function satisfies both conditions

(27)

Proof: For each , set

The properties

(28)

and

(29)

are immediate by construction.
Now define the scaling by

We get for all since , whence
by virtue of the fact that is always an integer.

This establishes (26).
Next, observe that if and only , a condition

which occurs only when

(30)

This last inequality can only hold for a finite number of values
of . Otherwise, there would exist a countably infinite subset
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of such that both (16) and (30) simultaneously hold on .
In that case, we conclude that

and this is a clear impossibility in view of (28). Together with
(26), this establishes the admissibility of the scaling

.
Fix . The definitions imply ,

and upon squaring we get the inequalities

and

The deviation sequence of the newly defined
scaling (26) is determined through

Using the aforementioned two inequalities, we then conclude
that

(31)

and

(32)

It is now plain from (28) and (31) that the first half of (27) holds.
Next, by combining (31) and (32) we get

(33)

Letting go to infinity in (33) and using (29), we conclude to
the second half of (27) since by virtue of
(16).

The scaling defined at (26) is strongly ad-
missible and still satisfies condition (16), and an easy coupling
argument based on (26) shows that

Therefore, we need to only show (17) under (16) for strongly ad-
missible scalings. As a result, in view of the discussion leading
to (20) it suffices to establish the following result, to which the
remainder of this paper is devoted.

Proposition 6.2: Consider any strongly admissible scaling
whose deviation function

satisfies . Under condition (16), we have

(34)

Proposition 6.2 shows that in random key graphs, graph con-
nectivity is asymptotically equivalent to the absence of isolated

nodes under any strongly admissible scaling whose deviation
function satisfies under condi-
tion (16).

VII. EQUIVALENCE (25)

To establish the key equivalence (25), we start with simple
bounds which prove useful in a number of places. Full details
are available in [22] and [27].

Lemma 7.1: For positive integers , , and such that
, we have

whence

(35)

Applying Lemma 7.1 (with ) to expression (6) yields
the following bounds.

Lemma 7.2: With positive integers and such that
, we have

A little bit more than (25) can then be said.

Lemma 7.3: For any scaling , it holds that

(36)

if and only if

(37)

and under either condition we have the asymptotic equivalence

(38)

On several occasions, we will rely on (38) through the fol-
lowing equivalent formulation: For every in , there ex-
ists a finite integer such that

(39)

whenever .
Proof: As noted already at the end of Section V, condi-

tion (37) (which holds for any strongly admissible scaling) im-
plies (24) for all sufficiently large. On that range,
Lemma 7.2 yields

(40)
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Multiply (40) by and let go to infinity in the resulting
set of inequalities. Under (37), we get

from the elementary fact , while

by virtue of (23) (which is implied by (37)). The asymptotic
equivalence (38) follows, and the validity of (36) is immediate.
Conversely, under the condition , we have

for all sufficiently large (by the comment
following (7)), and constraint (24) necessarily holds for all

sufficiently large. On that range, (40) being valid, we

conclude to under (36). The convergence
(37) now follows and the asymptotic equivalence (38) is given
by the first part of the proof.

VIII. BASIC UNION BOUND

Proposition 6.2 will be established with the help of a union
bound for the probability appearing at (34)—the approach is
similar to the one used for proving the one law for connectivity
in Erdös–Rényi graphs [2, p. 164], [7, Sec. 3.4, p. 40], [18, p.
304].
Fix and consider positive integers and such

that . For any nonempty subset of nodes, i.e.,
, we define the graph (with vertex set )

as the subgraph of restricted to the nodes in . We also
say that is isolated in if there are no edges (in )
between the nodes in and the nodes in the complement

. This is characterized by

With each nonempty subset of nodes, we associate sev-
eral events of interest: let denote the event that the
subgraph is itself connected. The event is
completely determined by the rvs . We also in-
troduce the event to capture the fact that is isolated
in , i.e.,

Finally, we set

(41)

The starting point of the discussion is the following basic
observation: if is not connected and yet has no isolated
nodes, then there must exist a subset of nodes with
such that is connected while is isolated in .
This is captured by the inclusion

with denoting the collection of all nonempty subsets of
. A moment of reflection should convince the

reader that this union need only be taken over all subsets of
with . Then, a standard union bound

argument immediately gives

(42)

where denotes the collection of all subsets of
with exactly elements.
For each , we simplify the notation by writing

,
and . For this notation is
consistent with as defined in Section V. Under the en-
forced assumptions, exchangeability gives

and the expression

follows since . Substituting into (42), we obtain the
key bound

(43)

Consider a strongly admissible scaling as
in the statement of Proposition 6.2. On the right-hand side of
(43), we substitute by by means of this strongly admissible
scaling. The proof of Proposition 6.2 will be completed once we
show that

(44)

under the appropriate conditions. This approach was used to es-
tablish the one law in Erdös–Rényi graphs [2], [7], [18] where
simple bounds can be derived for the probability terms in (44).
Our situation is technically more involved and requires more
delicate bounding arguments as will become apparent in the
next sections.

IX. BOUNDING THE PROBABILITIES

Again consider positive integers and such that .
Fix and pick . Since exact expres-
sions are not available for the probability , we seek
instead to provide a bound on this quantity. For reasons that will
become apparent shortly, it will be beneficial to focus on the fol-
lowing more general task: let denote the -field on gener-
ated by the rvs . We are interested in deriving
an upper bound on the probability where is
any -measurable event, the original situation corresponding
to .



2990 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 5, MAY 2012

In the course of doing so, we shall make use of the rv
given by

The rv counts the number of distinct keys issued to the
nodes , so that the bounds

(45)

always hold.
Thus, pick any -measurable event , and note that

is also an -measurable event since completely determined by
the rvs . It is now plain (41) that

upon preconditioning on the rvs . Next, with
the help of the equivalence

we can use (7) (with ) to get

under the enforced independence assumptions. The conclusion

then follows with

Applying (35) (with ) in Lemma 7.1, we finally ob-
tain the inequality

(46)

This discussion already brings out a number of items that are
likely to require some attention: We will need good bounds for
the probabilities and . Also, some of the dis-
tributional properties of the rv are expected to play a role.
Constraints (45) automatically imply whenever

, i.e., , whence

(47)

where we have set

This suggests that different arguments will probably be needed
for the ranges and .
The next result is crucial to showing that for each

, the probability of the event can be
upper-bounded in terms of known quantities. Let
stand for the subgraph when , and
let denote the collection of all spanning trees on the vertex
set .

Lemma 9.1: For each , we have

(48)

where the notation indicates that the tree is a
subgraph spanning .
This last expression is analogous to the one found in

Erdös–Rényi graphs [2], [7] with playing the role
of probability of link assignment; this is in spite of possible
correlations.

Proof: We shall prove the result by induction on
. For conclusion (48) is nothing more than

(6) since contains exactly one tree, and this establishes the
basis step.
Next, we consider the following induction step: Pick

and assume that for each , it is already
known that

(49)

We now show that (49) also holds for each .
To that end, pick a tree in and identify its root.3 Let
denote a node that is farthest from the root of —there might
be several such nodes. Also denote by its unique parent, and
let denote the set of children of . Obviously, is not
empty as it contains node ; set . Next we construct
a new tree from by removing from all the edges from
node to the nodes in . By exchangeability, there is no
loss of generality in assuming (as we do from now on) that the
tree is rooted at node 1, that the unique parent of the farthest
node selected has label , and that its children have been
labeled . With this convention, the tree
is defined on the set of nodes .
It is plain that occurs if and only if the two

sets of conditions

and

both hold. Under the enforced independence assumptions, we
get

3As we are considering undirected graphs, all nodes can act as a root for the
(undirected) tree , in which case any one will do for the forthcoming discus-
sion.
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Thus, upon conditioning with respect to the rvs
, we readily find

as we use the induction hypothesis (49) to evaluate the proba-
bility of the event . This establishes the
induction step.

The bound below now follows as in Erdös–Rényi graphs [2],
[7].

Lemma 9.2: For each , we have

(50)

Proof: Fix . If is a connected graph,
then it must contain a spanning tree on the vertex set ,
and a union bound argument yields

By Cayley’s formula [3], [14] there are trees on vertices,
i.e., , and (50) follows upon making use of (48).

Bound (46) (with ) and the inequality
together imply

(51)

as we make use of Lemma 9.2 in the last step. Unfortunately,
this bound turns out to be too loose for our purpose. As this can
be traced to the crude lower bound used for , we expect
that improvements are possible if we take into account the dis-
tributional properties of the rv . This step is taken in the
next section.

X. TAIL OF THE RV AND IMPROVED BOUNDS

Consider positive integers and such that . Rough
estimates will suffice to get the needed information regarding
the distribution of the rv . This is the content of the next
result.

Lemma 10.1: For all , the bounds

(52)

hold whenever .
Proof: For a given in the prescribed range, we note that

implies that is contained in some set
of size , whence

A standard union bound argument gives

(53)

under the enforced assumptions on the rvs .
Since every subset of size contains further subsets of

size , we get

Substituting this fact into (53), we obtain the inequality

(54)

since . Under the enforced conditions, it is the case
that

since decreases as increases from to ,
and inequality (52) follows by using this fact into (54).

Bounds (52) trivially hold with when
since we always have . We shall make

repeated use of this fact as follows: For all , with
, we have

(55)

on the range whenever for
some , a condition needed only for the last step and which
implies since is an integer.
We are now in a position to improve on bound (51).

Lemma 10.2: Consider positive integers and such that
. With and , we have

(56)

for each positive integer .
Proof: Fix and pick . For

each positive integer , consider the decomposition

(57)
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Using (46) (with ) and the bound
, we get

(58)

Invoking (46) again (this time with ), we find

(59)

since on the event . We complete
the proof by combining (57), (58), and (59).

XI. OUTLINING THE PROOF OF PROPOSITION 6.2

It is now clear how to proceed: Consider a strongly admissible
scaling as in the statement of Proposition 6.2.
Under (21), we necessarily have as discussed
at the end of Section V; see (23). As a result,
, and for any given integer we have

(60)

for some finite integer .
For the time being, pick an integer (to be specified

in Section XIII), and on the range consider the
decomposition

(61)

Let go to infinity: the desired convergence (44) will be estab-
lished if we show

(62)

(63)

and

(64)

The next sections are devoted to proving the validity of
(62), (63), and (64) by repeated applications of Lemma 10.2.

We address these three cases by making use of the bound (56)
with

and

respectively. Throughout, we make repeated use of the standard
bounds

(65)

Finally, from convexity we note the inequality

(66)

Before getting on the way, we close this section by high-
lighting key differences between our approach and the one used
in papers [1] and [5]. The observation yielding (43), which
forms the basis of our discussion, is also used in some form as
the starting point in both these papers. However, these authors
did not take advantage of the fact that the sufficiently tight
bound (50) is available for the probability of the event , a
consequence of the exact expression (48). Through this bound,
we can leverage strong admissibility (via (25)) to get

for sufficiently large with any , in which case

for each . This opens the way to using the prop-
erties of the scaling by means of its deviation function defined
by (14)—such a line of arguments cannot be made if the scaling
is merely admissible.
The bound (56) arises from the need to efficiently bound the

rv . Indeed, if it were the case that
for each , then the conjecture (1)–(2) would
readily follow as in Erdös–Rényi graphs by simply making use
of bound (51); for example, see the arguments in [2], [7], and
[18]. In addition, the constraint al-
ready suggests that the cases and be
considered separately, with a different decomposition (56) on
each range—this was also the approach taken in the [1] and
[5]. Interestingly enough, a further decomposition of the range

is needed to establish Theorem 4.1. In partic-
ular, using bound (56) with for sufficiently small
in across the entire range would not suf-
fice for very small values of : in that range, the obvious bound

might be tighter than , and
another form of bound (56) is needed to obtain the desired re-
sults, hence (61).
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XII. ESTABLISHING (62)

Consider a strongly admissible scaling
whose deviation function satisfies
. According to this scaling, for each and

, replace by in Lemma 10.2 with
for some in . For an arbitrary integer ,

convergence (62) will follow if we show that

(67)

and

(68)

for each . These two convergence statements are
established in Propositions 12.1 and 12.2, respectively.

Proposition 12.1: Consider a strongly admissible scaling
whose deviation function

satisfies . With , convergence (67)
holds for each .

Proof: Pick and , and consider a
strongly admissible scaling . We combine
bounds (50) and (65) to write

(69)

for all . Thus, it follows from Lemma 7.3
(via (38)) that convergence (67) will be established if we show
that

(70)

This step relies on the strong admissibility of the scaling.
On the range where (69) holds, we find with the help of (14)

that

(71)

Under the condition it is plain that

and

Letting go to infinity in (71), we readily get (70) by making
use of (66).

Proposition 12.2: Consider a strongly admissible scaling
whose deviation function

satisfies . For every in , convergence
(68) holds for each .

Proof: Pick and in , and consider a
strongly admissible scaling . For sufficiently
large, we use (52) with to obtain

The condition implies the inequalities

and

Thus, upon setting

we conclude by strong admissibility (in view of (23)) that
for all sufficiently large, whence

on that range.
There, we can write

(72)

(73)

where we obtain (72) upon using the fact . On the other
hand, we also have

(74)
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Therefore, upon multiplying (73) and (74) we see that Propo-
sition 12.1 will follow if we show that

(75)
The choice of and ensures that and

for all sufficiently large. The condition
now yields

(76)

and

(77)

The desired conclusion (75) follows by making use of (76) and
(77) with the help of inequality (66).

XIII. ESTABLISHING (63)

In order to establish (63), we will need two technical facts
which are presented in Propositions 13.1 and 13.2.

Proposition 13.1: Consider a strongly admissible scaling
whose deviation function

satisfies . With and integer ,
we then have

(78)
whenever and are selected so that

(79)

Proposition 12.1 is proved in Section XV. Next, set

(80)

Proposition 13.2: Consider a strongly admissible scaling
whose deviation function

satisfies . If there exists some such
that (16) holds for all sufficiently large, then

(81)
whenever in is selected small enough so that

(82)

A proof of Proposition 13.2 can be found in Section XVI.
Note that for any , and

; hence, condition (82) can always be
met by suitably selecting small enough.
We now turn to the proof of (63): Keeping in mind Propo-

sitions 13.1 and 13.2, we select sufficiently small in
to meet condition (82) and then pick any integer suffi-
ciently large to ensure (79). Next consider a strongly admissible

scaling whose deviation function
satisfies the condition . Then, for each

[with as specified at (60)], replace by ac-
cording to this scaling, and for each , set

in Lemma 10.2 with as specified earlier.
With these preliminaries in place, we see from Lemma 10.2

that (63) holds if both limits

and

hold. However, under (79) and (82), these two convergence
statements are immediate from Propositions 13.1 and 13.2, re-
spectively.

XIV. ESTABLISHING (64)

The following two results are needed to establish (64). The
first of these results is given next with a proof available in
Section XVII.

Proposition 14.1: Consider a strongly admissible scaling
whose deviation function

satisfies . If there exists some such
that (16) holds for all sufficiently large, then

whenever in is selected so that

(83)

We have , whence ,
and (83) can be made to hold for any by taking
sufficiently small. The second proposition is established in

Section XVIII.

Proposition 14.2: Consider an admissible scaling
whose deviation function satisfies

. If there exists some such that (16)
holds for all sufficiently large, then

for each in .
The proof of (64) is now within easy reach: Consider a

strongly admissible scaling whose deviation
function satisfies . On the range
where (16) holds, for each [with as specified
at (60) where and still satisfy (79) and (82)], replace by
according to this scaling, and set in Lemma 10.2

with as specified by (83). We get (64) as a direct consequence
of Propositions 14.1 and 14.2.
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XV. PROOF OF PROPOSITION 13.1

Let and be as in the statement of Proposition 13.1, and
pick a positive integer such that . Arguments
similar to the ones leading to (69) yield

for all . Thus, in order to establish (78), we need to
only show

As in the proof of Proposition 12.2, by the strong admissibility
of the scaling (with the help of (39)), it suffices to show

(84)

with .
Fix . For each , we get

as we note that

(85)

Next, we set

and

With this notation, we conclude that

(86)

Obviously, under the condition
, so that for all sufficiently

large. On that range, the geometric series at (86) converges to a
finite limit with

Thus,

with

Under (79), the condition implies

and

The desired conclusion (84) is now immediate with the help of
inequality (66).

XVI. PROOF OF PROPOSITION 13.2

We begin by providing bounds on the probabilities of interest
entering (81). Recall the definitions of the quantities introduced
before the statement of Proposition 13.2.

Proposition 16.1: Consider positive integers , , and
such that and for some . For
any in small enough to ensure

(87)

we have

for all where we have set

Proof: Pick positive integers , and as in the state-
ment of Proposition 16.1. For each , we use (55)
with to find

On the range

(88)
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the inequalities

(89)

hold, whence since . Now if is selected in
sufficiently small such that , it then follows from (89)
that so that

(90)

Under these circumstances, we also have

(91)

Two possibilities arise.
Case I ( ): Since by (90),
we get

(92)

with given by (80). In the last step, we made use
of (91) together with the fact that

since .
On range (88), we have from (89) and substituting
this fact into (92) yields

If in were selected such that , then
, and we get

by recalling (91). With this selection, this last upper bound
is largest when , whence

(93)

Case II ( ): On range (88), we have
by virtue of (89).

This time, we find

The condition now implies

(94)

since upon using (89). The proof of Proposition
16.1 is completed by combining inequalities (93) and (94).

We can now turn to the proof of Proposition 12.2: Consider
positive integers , and as in the statement of Proposition
16.1. Pick in which satisfies (82) and note that (87) is
also valid under this selection. In the usual manner, we get

as we invoke Proposition 12.1. If , then the
geometric series is summable with

so that

(95)
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Now, consider a strongly admissible scaling
whose deviation function satisfies

. On the range where (16) holds, replace by
in the last inequality according to this admissible scaling.

From (14), we see that

so that , whence

Moreover, any in the interval satisfying (82) also satis-
fies the condition , so that

As a result, under (82) we see that

whence for all sufficiently large. Therefore,
on that range (95) is valid under the enforced assumptions with
being replaced by , and we obtain

Finally, let go to infinity in this last expression: the condition
implies and this

completes the proof.

XVII. PROOF OF PROPOSITION 14.1

Proposition 14.1 is an easy consequence of the following
bound.

Proposition 17.1: Consider positive integers and such
that and . For each in , we have

(96)

for all .
Proof: Fix . In establishing (96), we need to

only consider the case (for otherwise (96) trivially
holds), so that and . The range

is then equivalent to

hence

as we make use of the condition in the last step.
With in the interval , it follows that

and bound (52) applies with for all
.

With this in mind, recall (85). We then get

(97)

since for all as pointed out
earlier. The passage to (97) made use of the fact that

. The binomial formula now implies

(98)

so that

and the desired conclusion (96) follows.

Now, if in Proposition 17.1, we assume that for some
, then the inequality

follows as soon as

(99)
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and (96) takes the more compact form

To conclude the proof of Proposition 14.1, observe that (99)
is implied by selecting in according to (83). In that case,
consider a strongly admissible scaling . On
the range where (16) holds, replace by in the last inequality
according to this scaling. This yields

Letting go to infinity in this last inequality, we readily get the
desired conclusion from (83).

XVIII. PROOF OF PROPOSITION 14.2

Consider positive integers and such that ,
and pick in the interval . For each , crude
bounding arguments yield

(100)

where we have used (85) and (98).
To complete the proof of Proposition 14.2, consider an ad-

missible scaling whose deviation function
satisfies . Replace by in

(100) according to this admissible scaling so that

Let go to infinity in this last inequality: Condition (16) im-
plies

for sufficiently large, whence
under the assumed condition . Consequently,

and the desired conclusion follows.
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